Real World Applications of RFID

Mr. Mike Rogers
Bryan Senior High School
Omaha, NE
RFID Overview

- **RFID**=
 - Radio
 - Frequency
 - Identification

- RFID is based on wireless communication over the air that reads or writes information from a tag.
RFID Overview Continued...

http://www.youtube.com/watch?v=hPqUUR5OFJg&feature=related
Components of an RFID Deployment

- Transponder (tag) – active, passive frequency, form factor
- Encoder – “printers”
- Interrogator – Transceiver or reader ($1,000)
- Middleware
RFID Definitions

Famous Contributors

RFID is based on a chain of scientific discoveries from some of our most important intellectual pioneers such as:

1846
Michael Faraday: identified that both light and radio waves are part of electromagnetic energy.

1864
James Maxwell: in 1864 propounded his theory that electric and magnetic energy travel in transverse waves at the speed of light.

1887
Heinrich Hertz: proved Maxwell's theory and showed that radio waves may be reflected, refracted, and polarized like light.

1895
Guglielmo Marconi: demonstrated wireless transmission of radio waves.

Public Domain and Patents

Military and Government

For Profit Applications

RFID Timeline

Source: RFID Handbook + Land and Catlin’s “Shrouds of Time – The History of RFID”
Shoqlifter or not?

http://www.youtube.com/watch?v=eob532iEpqk&feature=related
Future Supermarket?

• When you go to the grocery store, how do you pay for your items?

• Is this process easy or time-consuming?

• What is the name of this item which cashiers use to check-out a product?

• How does this item work?
RFID vs the Barcode

• Barcode revolutionized Supply Chain Management

• RFID offers the benefits as the Bar Code – but also a whole lot more
• **Barcode**

 – **Strengths**
 • Mature technology
 • Established standards
 • Low implementation cost
 • Human readability

 – **Weaknesses**
 • Requires clean line of sight
 • Orientation sensitive
 • Sensitive to printing and abrasion
 • Static data content
Bar Code vs RFID

• RFID
 – **Strengths**
 • Line of sight NOT required
 • Passive data collection
 • Not sensitive to environment
 • Dynamic data content
 • Data Capacity
 – **Weaknesses**
 • Emerging technology
 • Lack of standards
 • Cost moderate to high today
Real World Examples of RFID

- Shop Lifting Systems
- Animal Tagging
- Toll Roads
- ID’s and Passports
- Keyless Entry
- Marathon Tracking
- Manufacturing
- Freight Transportation
- Distribution Center
- Retail Stores
- Medical Equipment
- Military/DOD

The key word today in industry is VISIBILITY
Visibility

• Information has Replaced Inventory

 – Technology
 • Internet
 • Supply Chain Software
 – And now RFID

 – Knowledge of what is in the pipeline allows the supply chain to hold less inventory
• What do we know about Inventory?

– It is Expensive
 – Inventory as a percent of total assets
 • Sarah Lee – 1998 – 25% 2007 – 9%
 • Wal-Mart – 1998 – 36% 2008 – 22%

– It is necessary
 • Stockouts cost money
 – P&G in 2003 – average out-of-stock was 10%
 » Cut that to 5% in 2005
RFID – Why Now?

• Mandates:
 – Wal-Mart
 – Target
 – DoD
 – Albertsons

• EPC compliant hardware is emerging

• EPC standards ratified in 12/04
 – Gen-2 tags
Why the Mandates?

• Wal-Mart -- $3.5 billion in lost sales

• Need product on the shelf.
RFID Technology

• Tags – Most important element

• Different types of tags
 – Active vs Passive
 – Low Frequency
 – High Frequency
 – Ultra High Frequency
RFID Tags

• **Passive Tag**
 – Energy from the reader “wakes up” the tag and powers its operation.
 – The tag then reflects a signal that can be decoded from the reader

• **Active Tag**
 – Transmit a signal using its own power source (battery) without initiation
RFID Frequency

<table>
<thead>
<tr>
<th>Low Frequency (LF)</th>
<th>High Frequency (HF)</th>
<th>Very High Frequency</th>
<th>Ultra High Frequency (UHF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 kHz 125 kHz 134.2 kHz 300 kHz</td>
<td>3 MHz 13.56 MHz 30 MHz</td>
<td>31 MHz 300 MHz</td>
<td>300 MHz 433 MHz 2.45 GHz 3 GHz</td>
</tr>
</tbody>
</table>

RFID Tags
Low Frequency

- Typical Range – 10 feet
- Tag – 3-6 inches
- 50 tags can be read at once
- Cost $3-$10
- Not Wal-Mart compatible
- Used for animal tracking, ID badges
- Not EPC compatible
RFID Tags
High Frequency

• Typical Range – 10 feet
• Tag – 3-6 inches
• 50 tags can be read at once
• Cost $0.50-$5
• Not Wal-Mart compatible
• Used for Industrial, Scientific and Medical – Smart Card Security
• EPC compatible
RFID Tags
Ultra High Frequency

Typical Range – 40 feet
200-1000 tags can be read at once
Cost $0.20- Target is $.08
Wal-Mart compatible
Used for Retail and Supply Chain Management
EPC compatible
UPC vs. EPC

Universal Product Code
or
Electronic Product Code
Threats to RFID

- Tag Cost
- Cost of Implementation
- Lack of Standards
- RF transmission distance
- Tag/Reader sensitivity
- Privacy Concerns
- Security

http://www.youtube.com/watch?v=PoZ8B1qFWh8
RFID Assignment

• Research real-world applications of RFID on the internet
• Pick one application and create a two-minute presentation with a partner discussing this item
• You will be graded on this presentation with the RFID Grade Rubric